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Abstract. We investigate the long-time regime of a zero-temperature kinetic model with glassy
behaviour, introduced recently. In this regime, the energy density and its two-time correlation
function are found to have simple asymptotic expressions with logarithmic corrections, which
we derive exactly. In particular, the energy correlation function exhibits ageing. Its scaling form
readsC(t, tw) ≈ √

tw/t , with a large correction in 1/ ln tw. We also find that a closely related
model, with faster relaxation of the energy, leads to the same asymptotic scaling form for the
two-time correlation, with much smaller corrections.

1. Introduction

Recently, a simple model of slow relaxation without energy barriers, presenting a number
of the expected features of a glass, has been considered [1]. This model provides an
interesting contribution to the investigation of the minimal ingredients necessary for glassy
behaviour [2]. Its dynamics has then been studied analytically in [3–5].

The model is defined as follows. ConsiderN distinguishable particles. At the initial
time t = 0 the particles are distributed amongstM boxes. At each time step 1/N , a particle
and a box are chosen independently at random. The particle is moved to the box if the
energy, defined as minus the number of empty boxes, does not increase. In particular,
moves from a box containing one particle to an empty box are allowed.

This is the zero-temperature version of the model introduced in [1]. It is a mean-field
model, defined without any reference to a spatial structure. As shown in [4], the present
model can be mapped onto a biased random-walk problem, thus permitting its analytical
study.

In this paper we first analyse the dynamics of one-time quantities, thus completing the
study begun in [4]. Analytic expressions are derived for the quantities of interest in the
long-time regime, involving infinite series of logarithmic corrections. This study allows
us, in particular, to investigate quantitatively the accuracy of the adiabatic approximation
introduced in [4]. We then use this framework to find the scaling behaviour of the two-time
energy correlationC(t, tw) studied in [1, 3, 5], starting from an expression derived in [5].
We finally compare these results to those found in a closely related model, corresponding
to an unbiased random walk. We conclude by replacing the present study in the general
context of off-equilibrium problems, such as the kinetics of phase-ordering or the dynamics
of glasses.
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2. Dynamical equations for one-time quantities

Let us denote bynk(t) the number of boxes containingk particles at timet . Conservation
of the numbers of boxes and of particles yields∑

k>0

nk(t) = M (2.1a)∑
k>1

k nk(t) = N . (2.1b)

The fraction of boxes withk particles isnk(t)/M. In the limit of an infinite system
(M → ∞), this quantity is self-averaging, i.e. its value for a single history becomes equal
to its average over histories. We denote it byfk(t). From now on time is considered as
continuous. We take as the initial condition the configuration where each box contains one
particle, henceM = N and

fk(0) = δk,1 . (2.2)

Equations (2.1) yield∑
k>0

fk(t) = 1 (2.3a)∑
k>1

k fk(t) = 1 . (2.3b)

We denote byλ(t) the mean size of non-empty boxes, i.e. their mean number of particles.
We have

1

λ(t)
= 1 − f0(t) (2.4)

while the energy of the system per box reads〈E(t)〉 = −f0(t) (see equation (5.4a)).
The time evolution of the probabilitiesfk(t) is given by [4]

d

dt
fk(t) = k + 1

λ(t)
fk+1(t) + fk−1(t) −

(
1 + k

λ(t)

)
fk(t) (2.5a)

d

dt
f1(t) = 2

λ(t)
f2(t) −

(
1 + 1

λ(t)

)
f1(t) (2.5b)

d

dt
f0(t) = 1

λ(t)
f1(t) . (2.5c)

These equations express the balance between gains and losses to the probabilitiesfk(t).
Equations (2.4) and (2.5c) imply

d

dt
λ(t) = λ(t)f1(t) . (2.6)

Equations (2.5) describe an asymmetric random walk on the half-line with an absorbing
site at the origin, the sizek of boxes playing the role of the discrete position of the random
walker. Indeed they can be rewritten as

d

dt
fk(t) = µk+1fk+1(t) + λk−1fk−1(t) − (µk + λk)fk(t) (2.7)
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whereµk = k/λ(t) andλk = 1 are the transition rates from sitek (k 6= 0), to the left and
to the right, respectively, andλ0 = µ0 = 0. The velocity and diffusion coefficient of this
random walk read

Vk = λk − µk = 1 − k/λ(t) Dk = (λk + µk)/2 = [1 + k/λ(t)]/2 . (2.8)

Hence, according to whether the sizek of the box is smaller or larger than the mean size
λ(t), the biasbk = Vk/(2Dk) = (λ(t) − k)/(λ(t) + k) is positive or negative. This bias
generates entropy barriers [4].

3. Generating-function formalism

We consider the generating function

G(x, t) =
∑
k>0

fk(t) xk . (3.1)

It obeys the equation

∂

∂t
G(x, t) = (x − 1)

(
G(x, t) − 1

λ(t)

∂

∂x
G(x, t) − f0(t)

)
(3.2)

with the initial condition inherited from (2.2)

G(x, 0) = x . (3.3)

We also have

G(0, t) = f0(t) G(1, t) = 1 . (3.4)

Equation (3.2) can be solved, at least formally, by the method of characteristics. Define

y(x, t) = (1 − x) e−τ(t) (3.5)

with

τ(t) =
∫ t

0

du

λ(u)
. (3.6)

ThenF(y, t) = G(x, t) obeys

∂

∂t
F (y, t) = −y eτ(t)[F(y, t) − f0(t)] . (3.7)

Defining

D(t, s) =
∫ t

s

eτ(u)−τ(t) du (3.8)
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one finds

G(x, t) = e(x−1)D(t,0)
(
1 + (x − 1) e−τ(t)

) + (1 − x)

∫ t

0
du f0(u) eτ(u)−τ(t) e(x−1)D(t,u) .

(3.9)

Equation (3.9) can be rewritten as

G(x, t) = e(x−1)D(t,0)
(
1 + (x − 1) e−τ(t)

) +
∫ t

0
du f0(u)

d

du
e(x−1)D(t,u)

= e(x−1)D(t,0)
(
1 + (x − 1) e−τ(t)

) + f0(t) −
∫ t

0
du

f1(u)

λ(u)
e(x−1)D(t,u) . (3.10)

Hence, using the first of equations (3.4), one obtains an implicit non-linear integral equation
for λ(t)

1 − e−τ(t) =
∫ t

0
du

f1(u)

λ(u)
eD(t,0)−D(t,u) (3.11)

with

D(t, 0) − D(t, u) =
∫ u

0
eτ(v)−τ(t) dv . (3.12)

The above generating-function formalism was already present in [4, 5]. It has been used
in [5] to derive (3.9) from (2.5).

4. Long-time regime for one-time quantities

The aim of this section is to obtain an analytical description of the long-time behaviour of
λ(t) and of the probabilitiesfk(t). This can be done by three different methods, as follows.

(i) The first approach is based on an analysis of the formal solution (3.11) in the long-
time regime. It only uses the fact that quantities such asλ(t) are slowly varying in time.
The result (4.7) will provide a justification of this assertion.

Neglecting the exponentially small term in the left-hand side of (3.11), we obtain

1 =
∫ t

0
du

f1(u)

λ(u)
+

∫ t

0
du

f1(u)

λ(u)

(
eD(t,0)−D(t,u) − 1

)
. (4.1)

The first integral in the right-hand side is equal to 1−1/λ(t), by equation (2.6). The second
integral is dominated by values ofu close to the upper boundt . We therefore setu = t − ε,
with ε � t , and we use the following estimates:

τ(t) − τ(u) =
∫ t

u

dv

λ(v)
≈ ε

λ(t)
(4.2a)

D(t, u) =
∫ t

u

eτ(v)−τ(t) dv ≈ λ(t)
(
1 − e−ε/λ(t)

)
. (4.2b)

Settingz = exp[−ε/λ(t)], and again using (2.6), we obtain

dt

dλ
= 1

λ(t)f1(t)
≈ I (λ(t)) (4.3)
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Figure 1. Plot of the mean sizeλ(t) of the non-empty boxes at timet , against lnt . Full
curve: finite-time data, obtained by numerical integration of the evolution equations (2.5), up to
t = 10 000. Broken curve: analytical prediction (4.5) of the long-time analysis.

where

I (λ) =
∫ 1

0

dz

z
(eλz − 1) =

∑
n>1

λn

n n!
= Ei(λ) − ln λ − γ ∼ eλ

λ

∑
`>0

`!

λ`
. (4.4)

In this equation Ei(x) denotes the exponential integral, andγ is Euler’s constant. The last
expression is an asymptotic expansion, valid forλ large.

Equation (4.3) yields the relation betweent andλ as

t (λ) − t0 ≈
∫ λ

0
I (λ′) dλ′ =

∫ 1

0

dz

z2
(eλz − 1 − λz) =

∑
n>1

λn+1

n (n + 1)!
∼ eλ

λ

∑
`>0

(` + 1)!

λ`
.

(4.5)

A natural choice for the integration constantt0 consists in fixingt (1) = 0.
The long-time expression (4.5) is the main prediction of this section. The relative error

made in the above analysis is roughly of order dλ/dt . This quantity itself is of order e−λ

by (4.3) and (4.4), or of order 1/t . We thus expect our results (4.4), (4.5) to be valid up
to a relative error exponentially small inλ. As a consequence, the last expressions in the
right-hand sides of (4.4), (4.5) yield the correct asymptotic power-series expansions to all
orders in 1/λ. Keeping only the first two terms, we have

t = eλ

λ

[
1 + 1

λ
+ O

(
1

λ2

)]
(4.6)

i.e.

λ(t) = ln t + ln ln t + · · · (4.7)

where the higher-order terms roughly vanish as 1/ ln t when t → ∞.
In figure 1 we give a comparison of the long-time prediction (4.5) with finite-time

data forλ(t), obtained by a numerical integration of the differential equations (2.5), up to
t = 10 000. This graph was already given in [4]. It is presented here for further comparison
with figure 3. It shows that the long-time analysis exposed above yields a good description
of the behaviour ofλ(t), even for times as small ast ∼ 1.
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(ii) Another approach, based on an adiabatic approximation, has been presented in [4].
It consists in consideringλ as a constant in order to compute the mean absorption time of
the random-walk problem (2.7). This method yields (4.5). However, no analysis of the
accuracy of the adiabatic approximation was given in [4]. The above approach provides
such an analysis. A prior adiabatic approximation to the model studied here was presented
in [3]. It leads to a result similar to equation (4.10) below.

(iii) We find it interesting to present a third derivation of equation (4.5). This approach
again uses the fact thatλ is slowly varying in time.

As a first approximation, we look for a stationary solution to equations (2.5a) and (2.5b),
with no absorption atk = 0, obtainingfk = Cλk/k!. The normalization condition (2.3b)
then fixes the constantC. We thus obtain the Poisson distribution

fk ≈ fk
Poisson= e−λ λk−1

k!
(k > 1) . (4.8)

The only time dependence of the probabilitiesfk
Poissonis contained in the dependence ofλ

on t . These probabilities are peaked aroundk = λ, with a Gaussian scaling form of width√
λ, namely

fk
Poisson≈ 1√

2πλ3
exp

(
− (k − λ)2

2λ

)
. (4.9)

As a consequence, the evolution ofλ(t), given by equation (2.6), is dominated by
large deviations, i.e. very rare events in the long-time regime [4]. Within the present
approximation we have dλ/dt ≈ λf1

Poisson= λ e−λ, hence

dt

dλ
≈ eλ

λ
(4.10)

in agreement with equations (4.3), (4.4), to leading order.
The above derivation, already given in [4], can be improved systematically by looking

for a stationary solution to equations (2.5a) and (2.5b) which is more accurate than the
fk

Poisson. To do so, we solve these equations iteratively as follows. Assuming thatf1 is
known, we obtainf2 = (λ + 1)f1/2, and so on, i.e.

fk = f1
λk−1

k!

k−1∑
`=0

`!

λ`
. (4.11)

The above solution is more accurate than the Poisson distribution (4.8), as long ask is
not too large. Indeed fork � λ (more preciselyλ−k � √

λ) the sum in the right-hand side
of (4.11) is a small correction to its prefactor, while fork � λ (more preciselyk−λ � √

λ)
equation (4.11) yields the unacceptable behaviourfk ≈ f1/k. We thus choose to match
the improved solution (4.11) with the Poisson distribution (4.8) at some pointk = K � λ.
This yields

dt

dλ
≈ eλ

λ

K−1∑
`=0

`!

λ`
. (4.12)

This expression correctly predicts the firstK correction terms in 1/λ of the long-time
solution (4.4). If we include more and more corrections by lettingK go to infinity, we
recover the (4.3), withI (λ) given by the seriesI (λ) = eλS(λ), where

S(λ) =
∑
`>0

`!

λ`+1
. (4.13)
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To summarize the three approaches described above, we note that (i) and (ii) provide
the closed-form long-time solution (4.5), while (iii) yields the series (4.13). This series is
asymptotic but divergent. It is actually one of the first historical examples of a divergent
asymptotic series [6], already considered by Euler. The sumS(λ) is only defined up to
an exponentially small ambiguitySamb, of order the smallest of the terms̀!/λ`+1. The
minimum takes place for̀ ≈ λ, and thereforeSamb ≈ e−λ. The ambiguity of the sumS(λ)

is thus of relative order e−λ ∼ 1/t , which is precisely the order of magnitude of the error
to the prediction (4.5) of the long-time analysis.

Let us note that, in a more general context, the presence of exponentially small
corrections, which are non-perturbative in the control parameter of the problem, hereλ(t),
is often met when using adiabatic approximations. This is, for instance, the case in classical
mechanics.

5. Dynamical equations and long-time regime for correlations

We now consider correlations between configurations of the system at two different times
tw and t , with 0 6 tw 6 t . Along the lines of [5], we denote bygk(t, tw) the probability
that any given box containsk particles at timet , knowing that it was empty at the earlier
time tw. We have∑

k>0

gk(t, tw) = 1 (5.1)

and

gk(tw, tw) = δk,0 . (5.2)

Let ki(t) be the number of particles contained in boxi at time t . The energy per box
at time t then reads

E(t) = − 1

M

M∑
i=1

δki (t),0 (5.3)

since the sum counts the number of empty boxes at timet . As long as the numberM of
boxes is finite, the energy per boxE(t) is a fluctuating quantity depending on the history
of the system. Its first moments and its correlation function can be expressed as

〈E(t)〉 = −f0(t) (5.4a)

〈E(t)2〉 = f0(t)
2 + 1

M
f0(t)[1 − f0(t)] (5.4b)

〈E(t)E(tw)〉 = f0(t) f0(tw) + 1

M
f0(tw)[g0(t, tw) − f0(t)] . (5.4c)

Hence the connected two-time correlation function of the model, defined as [1, 3, 5]

C(t, tw) = 〈E(t)E(tw)〉 − 〈E(t)〉〈E(tw)〉
〈E(tw)2〉 − 〈E(tw)〉2 (5.5)

reads

C(t, tw) = g0(t, tw) − f0(t)

1 − f0(tw)
= λ(tw)[g0(t, tw) − f0(t)] . (5.6)
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The initial value (5.2) impliesC(tw, tw) = 1.
As shown in [5], differential evolution equations for thegk can be derived by

conditioning the balance equations (2.5) for thefk on the boxes which are empty at time
tw. One thus obtains

d

dt
gk(t, tw) = k + 1

λ(t)
gk+1(t, tw) + gk−1(t, tw) −

(
1 + k

λ(t)

)
gk(t, tw) (5.7a)

d

dt
g1(t, tw) = 2

λ(t)
g2(t, tw) + f1(t) g0(t, tw) − 2g1(t, tw) (5.7b)

d

dt
g0(t, tw) = g1(t, tw) − f1(t) g0(t, tw) . (5.7c)

These are the same equations as equations (2.5), i.e. they describe a random walk with the
same transition rates, except fork = 0 andk = 1, where nowλ0 = f1, µ1 = 1, andµ0 = 0.
Without conditioning, equations (5.7) reduce to (2.5), and thegk are identical to thefk. Let
us note that the timetw, entering the initial condition (5.2), plays the role of a parameter in
these equations.

The generating function

H(x, t, tw) =
∑
k>0

gk(t, tw) xk (5.8)

obeys the equation

∂

∂t
H(x, t, tw) = (x − 1)

(
H(x, t, tw) − 1

λ(t)

∂

∂x
H(x, t, tw) − h(t, tw)

)
(5.9)

where

h(t, tw) = g0(t, tw)[1 − f1(t)] + g1(t, tw)f0(t) (5.10)

and with the initial condition

H(x, tw, tw) = 1 . (5.11)

We then have

H(0, t, tw) = g0(t, tw) H(1, t, tw) = 1 . (5.12)

Using again the method of characteristics [5], we can derive the following formal
solution to (5.9):

H(x, t, tw) = e(x−1)D(t,tw) + (1 − x)

∫ t

tw

du h(u, tw) eτ(u)−τ(t) e(x−1)D(t,u) . (5.13)

The boundary condition (5.12) atx = 0 leads to the implicit integral equation

g0(t, tw) = 1 +
∫ t

tw

du (h(u, tw) − 1) eτ(u)−τ(t) e−D(t,u)

= 1 +
∫ t

tw

du (h(u, tw) − 1)
d

du
e−D(t,u) . (5.14)
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We now turn to the analysis of the energy correlation functionC(t, tw) in the asymptotic
regime wheret and tw go to infinity. Our starting point is the exact relation (5.14), and its
analysis closely follows that of (3.11), carried out in section 4. We again setu = t − ε, and
we perform the Taylor expansion

h(u, tw) = h(t, tw) − ε
d

dt
h(t, tw) + · · · . (5.15)

The choice of keeping two terms will become clear after equation (5.22). By inserting this
expansion into equation (5.14), we obtain

g0(t, tw) ≈ 1 + (h(t, tw) − 1) J0 − d

dt
h(t, tw) J1 + · · · . (5.16)

The first integral equalsJ0 = 1 − exp(−D(t, tw)) ≈ 1 − e−λ. The second integral can be
estimated by means of (4.2), hence

J1 ≈
∫ ∞

0
dε ε eε/λ exp[λ (1 − e−ε/λ)] = λ e−λ I (λ) . (5.17)

Thus

g0(t, tw) ≈ e−λ + h(t, tw)
(
1 − e−λ

) − λ e−λ I (λ)
d

dt
h(t, tw) . (5.18)

This estimate remains to be combined with the relations (5.7c) and (5.10). Setting

N0(t, tw) = g0(t, tw) − f0(t) = C(t, tw)

λ(tw)
(5.19)

and neglecting all terms which are exponentially small inλ with respect to the leading ones,
we finally get

d

dt
N0(t, tw) ≈ − λ e−λ + f1(t)

1 − λ + λ2 e−λ I (λ)
N0(t, tw) (5.20)

or equivalently, in terms ofC(t, tw) and changing variables fromt to λ

d

dλ
C ≈ −α(λ) C (5.21)

with

α(λ) = λ e−λ + f1

λ f1
[
1 − λ + λ2 e−λ I (λ)

] = 1

λ
+ eλ

(1 − λ)eλ + λ2I (λ)
. (5.22)

We can now justifya posterioriwhy we have kept the first two terms in the expansion (5.15).
Indeed it can be checked that the contributions toα(λ) of higher-order derivatives ofh(t, tw)

with respect tot are exponentially negligible.
Finally, we find that the energy correlation function obeys the scaling law

C(t, tw) ≈ ϕ(tw)

ϕ(t)
= 8[λ(tw)]

8[λ(t)]
(5.23)
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with

ϕ(t) = 8[λ(t)] = exp

(∫ λ(t)

0
α(λ′) dλ′

)
. (5.24)

The expansion

α(λ) = 1

2

[
1 + 1

λ
+ O

(
1

λ2

)]
(5.25)

yields

ϕ(t) = 8[λ(t)] =
√

λ(t) eλ(t)

[
1 + O

(
1

λ(t)

)]
= √

t ln t

[
1 + O

(
1

ln t

)]
(5.26)

hence

C(t, tw) =
√

tw

t

ln tw

ln t

[
1 + O

(
1

ln tw
,

1

ln t

)]
. (5.27)

In terms of the dimensionless ratio

x = t

tw
> 1 (5.28)

the above result reads

C(t, tw) = 1√
x

[
1 − ln x

ln tw
+ O

(
1

(ln tw)2

)]
. (5.29)

The above expressions for the correlation function are the main results of this section. Let
us emphasize that the full scaling prediction (5.23) of the long-time analysis incorporates
all orders of an asymptotic series expansion in 1/λ, just as (4.5).

Figure 2 shows logarithmic plots of the correlation functionC(t, tw) against the ratio
x, for several values oftw. The finite-time data were obtained by a numerical integration
of the differential equations (5.7). In agreement with equation (5.29), they exhibit a very
slow logarithmic convergence toward the exact limit 1/

√
x.

Figure 2. Log–log plot of the energy correlation functionC(t, tw), against the ratiox = t/tw.
Full curves: finite-time data, obtained by numerical integration of the evolution equations (2.5)
and (5.7), fortw = 10, 30, 100, 300, and 1000 (from bottom to top). Broken line with slope
− 1

2 : exacttw → ∞ limit value C(t, tw) = 1/
√

x.
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Figure 3. Plot of the energy correlation functionC(t, tw) for x = t/tw = 2, against 1/ ln tw.
Full curve: finite-time data, obtained by numerical integration of the evolution equations (2.5)
and (5.7), up tot = 2tw = 512 000 (arrow). Circles: Monte Carlo data (see text). The error
bar on the data points is comparable to the size of the symbols. Broken curve: analytical
prediction (5.23) of the long-time analysis.

A more precise study of this convergence is given in figure 3 for the valuex = 2,
already considered in [1]. Finite-time data for the correlation functionC(2tw, tw), up to
t = 2tw = 512 000, are plotted against 1/ ln tw, together with the long-time result (5.23),
in order to better show their convergence to the limit value 1/

√
2. The finite-time data

are fully confirmed by the results of a Monte Carlo simulation of the dynamics of the
system, averaged over 100 histories, for a number of boxes and particles equal to 10 000,
and a maximal timet = 2tw = 19 200. A comparison of figures 1 and 3 shows that full
quantitative agreement between the finite-time data and the long-time result (5.23) only sets
in at much longer times than forλ(t).

Let us point out that the presence of logarithmic corrections to scaling makes any
numerical analysis of the long-time regime very difficult. This difficulty is illustrated by
figure 2 where the data exhibit, over a significant range of values ofx, and for values of
tw between 10 and 1000, an apparent power-law fall-off with a larger negative exponent
than the exact value− 1

2. This presumably explains the scaling form proposed in [1] for the
energy correlation fort � tw, namelyC(t, tw) ∼ (tw/t)0.70, instead of the exact square-root
law (5.29). Note also the incorrect prediction 0.58 for the limit of C(2tw, tw) as tw → ∞
found in this reference, instead of the exact value 1/

√
2.

Remark. Let us show that equation (5.22) can be derived alternatively along the lines of
approach (iii) of section 4. To do so, we generalize (5.19) by setting

Nk(t, tw) = gk(t, tw) − fk(t) . (5.30)

As a first approximation, we look for a stationary solution to equation (5.7a), thus again
obtaining a Poisson law,

Nk ≈ Aλk

k!
(k > 2) . (5.31)
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Equation (5.7b), together with (5.1) and (2.3a), determine bothN1 and the constantA in
terms ofN0. Equation (5.7c) then leads to the evolution equation

d

dt
N0 ≈ −λ + 1

2
e−λ N0 (5.32)

in agreement with both terms in the expansion (5.25).
This derivation can again be improved by incorporating systematic corrections to all

orders in 1/λ. Indeed, assumingf1 and ρ1 = N1/N0 to be known, we can solve the
stationary form of (5.7a) iteratively, thus obtaining

Nk = N0
λk

k!

(
ρ1

λ
+ (ρ1 − f1)

k−1∑
`=1

`!

λ`

)
. (5.33)

The argument then goes on as in section 4. We match the expressions (5.31) and (5.33) at
some pointk = K � λ, using equations (5.1) and (2.3a). This yields the expression (5.22)
for α(λ), but with I (λ) = eλS(λ) given in terms of the asymptotic series (4.13). The
discussion presented at the end of section 4 therefore applies to the energy correlation
function as well.

6. Discussion

Let us first compare the model studied so far, called model A in [4], with a closely
related model, called model B there, and defined as follows. The particles are no longer
distinguishable. At each time step a box is chosen at random among the non-empty boxes
and one of its particles is moved to another randomly chosen box if the energy (defined
as minus the number of empty boxes) does not increase. The probabilitiesfk have been
shown [4] to perform a symmetric (unbiased) random walk, described by the equations

d

dt
fk(t) = fk+1(t) + fk−1(t) − 2fk(t) (6.1a)

d

dt
f1(t) = f2(t) − 2f1(t) (6.1b)

d

dt
f0(t) = f1(t) . (6.1c)

It can be shown analogously that thegk(t, tw) obey [7]

d

dt
gk(t, tw) = gk+1(t, tw) + gk−1(t, tw) − 2gk(t, tw) (6.2a)

d

dt
g1(t, tw) = g2(t, tw) + λ(t)f1(t)g0(t, tw) − [1 + λ(t)]g1(t, tw) (6.2b)

d

dt
g0(t, tw) = λ(t)g1(t, tw) − λ(t)f1(t)g0(t, tw) . (6.2c)

The long-time analysis of model B, the details of which will be reported elsewhere [7],
leads to the following results. First, the relaxation of the energy is much faster. Indeed, we
have

λ(t) = √
πt

(
1 + 1

16t
+ · · ·

)
. (6.3)
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Moreover, the two-time energy correlation has the same asymptotic scaling form as that
derived above for model A, though with much smaller corrections, namely

C(t, tw) = 1√
x

[
1 −

√
x − 1

x
√

π

1√
tw

+ O
(

1

tw

)]
(6.4)

wherex = t/tw.
The above results can be replaced in the general context of the study of off-equilibrium

systems. Consider first the kinetics of phase ordering [8]. In coarsening systems, a scaling
hypothesis, proved for simple models and well verified by a number of other ones, states that
the long-time dynamics is characterized by a single time-dependent length scaleL(t), the
typical size of domains. As a consequence, the distribution of domain sizes is independent
of time, when lengths are scaled byL(t), and the two-time autocorrelation function takes
the form

C(t, tw) ≈ F

(
L(t)

L(tw)

)
. (6.5)

One usually has [8, 9]

F(y) ∼ y−3 for y = L(t)/L(tw) � 1 . (6.6)

Moreover, ifL(t) ∼ tα, then (6.5) yields

C(t, tw) ≈ G

(
t

tw

)
(6.7)

and, using (6.6)

G(x) ∼ x−α3 for x = t/tw � 1 . (6.8)

This scaling picture applies to model B. The mean sizeλ(t) of the non-empty boxes plays
the role ofL(t). The distribution of box sizes obeys a scaling law [4]. Finally, according
to (6.3) and (6.4), one hasα = 1

2 andF(y) = 1/y, hence3 = 1 andG(x) = 1/
√

x.
The case of model A, studied in this work, is more complex. The bias in the random

walk (2.5) is responsible for the existence of entropy barriers [4]. There is no time-
independent distribution of box sizesk in the scaling variablek/λ (see equation (4.9)).
As a consequence, the dynamics of this model is entirely driven by very rare events, so that
the mean sizeλ(t) only grows logarithmically. Furthermore, the correlation function does
not obey (6.5). Instead, one has (see equation (5.23))

C(t, tw) ≈ ϕ(tw)

ϕ(t)
(6.9)

with ϕ(t) ≈ √
t ln t , which shows that the mean sizeλ(t) is not the relevant length scale

for correlations. Nevertheless, forgetting about logarithmic corrections, we haveϕ(t) ∼ √
t ,

so that (6.9) is of the power-law form (6.7), withG(x) = 1/
√

x. Correlations thus have a
power-law behaviour int/tw, even though the mean size grows logarithmically.

Finally, we note that the two-time correlation functions of models A and B are given
asymptotically by the same power lawC(t, tw) ≈ √

tw/t , although their dynamics are very
different.

Let us conclude by mentioning that the scaling forms (6.5) and (6.9) can be viewed as
special cases of the more general law

C(t, tw) ≈ F

(
h(t)

h(tw)

)
(6.10)

which is met in several instances, such as the mode-coupling approach to relaxation in
glasses [10], and the dynamics of thep-spin spherical model [11, 12]. The present work
thus provides an example where the functionh(t) is known explicitly.
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